Skip to main content

NEAR-SIGHTEDNESS

Near-sightedness, also known as short-sightedness and myopia, is an eye disorder where light focuses in front of, instead of on, the retina. This causes distant objects to be blurry while close objects appear normal. Other symptoms may include headaches and eye strain. Severe near-sightedness is associated with an increased risk of retinal detachment, cataracts, and glaucoma. The underlying cause is believed to be a combination of genetic and environmental factors. Risk factors include doing work that involves focusing on close objects, greater time spent indoors, and a family history of the condition. It is also associated with a high socioeconomic class. The underlying mechanism involves the length of the eyeball growing too long or less commonly the lens being too strong. It is a type of refractive error. Diagnosis is by eye examination. Tentative evidence indicates that the risk of near-sightedness can be decreased by having young children spend more time outside. This may be related to natural light exposure. Near-sightedness can be corrected with eyeglasses, contact lenses, or surgery. Eyeglasses are the easiest and safest method of correction. Contact lenses can provide a wider field of vision, but are associated with a risk of infection. Refractive surgery permanently changes the shape of the cornea. Near-sightedness is the most common eye problem and is estimated to affect 1.5 billion people (22% of the population). Rates vary significantly in different areas of the world. Rates among adults are between 15% to 49%. In China the proportion of female is significantly higher than male. Among children, it affects 1% of rural Nepalese, 4% of South Africans, 12% of U.S. people, and 37% in some large Chinese cities. Rates have increased since the 1950s. Uncorrected near-sightedness is one of the most common causes of vision impairment globally along with cataracts, macular degeneration, and vitamin A deficiency.

SIGN AND SYMPTOMS

A myopic individual can see clearly out to a certain distance (called far point), but everything further becomes blurry. If the extent of the myopia is great enough, even standard reading distances can be affected. Upon routine examination of the eyes, the vast majority of myopic eyes appear structurally identical to nonmyopic eyes. Onset is often in school children, with worsening between the ages of 8 and 15.

TYPES

Various forms of myopia have been described by their clinical appearance: Simple myopia: Myopia in an otherwise normal eye, typically less than 4.00 to 6.00 diopters. This is the most common form of myopia. Degenerative myopia, also known as malignant, pathological, or progressive myopia, is characterized by marked fundus changes, such as posterior staphyloma, and associated with a high refractive error and subnormal visual acuity after correction. This form of myopia gets progressively worse over time. Degenerative myopia has been reported as one of the main causes of visual impairment. Pseudomyopia is the blurring of distance vision brought about by spasm of the accommodation system. Nocturnal myopia: Without adequate stimulus for accurate accommodation, the accommodation system partially engages, pushing distance objects out of focus. Nearwork-induced transient myopia (NITM): short-term myopic far point shift immediately following a sustained near visual task. Some authors argue for a link between NITM and the development of permanent myopia. Instrument myopia: over accommodation when looking into an instrument such as a microscope. Induced myopia, also known as acquired myopia, results from various medications, increases in glucose levels, nuclear sclerosis, oxygen toxicity (e.g., from diving or from oxygen and hyperbaric therapy) or other anomalous conditions. Sulphonamide therapy can cause ciliary body edema, resulting in anterior displacement of the lens, pushing the eye out of focus. Elevation of blood-glucose levels can also cause edema (swelling) of the crystalline lens as a result of sorbitol accumulating in the lens. This edema often causes temporary myopia. Scleral buckles, used in the repair of retinal detachments may induce myopia by increasing the axial length of the eye. Index myopia is attributed to variation in the index of refraction of one or more of the ocular media. Cataracts may lead to index myopia. Form deprivation myopia occurs when the eyesight is deprived by limited illumination and vision range, or the eye is modified with artificial lenses or deprived of clear form vision. In lower vertebrates, this kind of myopia seems to be reversible within short periods of time. Myopia is often induced this way in various animal models to study the pathogenesis and mechanism of myopia development.

DIAGNOSIS

A diagnosis of myopia is typically made by an eye care professional, usually an optometrist or ophthalmologist. During a refraction, an autorefractor or retinoscope is used to give an initial objective assessment of the refractive status of each eye, then a phoropter is used to subjectively refine the patient\’s eyeglass prescription. Other types of refractive error are hyperopia, astigmatism, and presbyopia. Types Various forms of myopia have been described by their clinical appearance: Simple myopia: Myopia in an otherwise normal eye, typically less than 4.00 to 6.00 diopters. This is the most common form of myopia. Degenerative myopia, also known as malignant, pathological, or progressive myopia, is characterized by marked fundus changes, such as posterior staphyloma, and associated with a high refractive error and subnormal visual acuity after correction. This form of myopia gets progressively worse over time. Degenerative myopia has been reported as one of the main causes of visual impairment. Pseudomyopia is the blurring of distance vision brought about by spasm of the accommodation system. Nocturnal myopia: Without adequate stimulus for accurate accommodation, the accommodation system partially engages, pushing distance objects out of focus. Nearwork-induced transient myopia (NITM): short-term myopic far point shift immediately following a sustained near visual task. Some authors argue for a link between NITM and the development of permanent myopia. Instrument myopia: over-accommodation when looking into an instrument such as a microscope. Induced myopia, also known as acquired myopia, results from various medications, increases in glucose levels, nuclear sclerosis, oxygen toxicity (e.g., from diving or from oxygen and hyperbaric therapy) or other anomalous conditions. Sulphonamide therapy can cause ciliary body edema, resulting in anterior displacement of the lens, pushing the eye out of focus. Elevation of blood-glucose levels can also cause edema (swelling) of the crystalline lens as a result of sorbitol accumulating in the lens. This edema often causes temporary myopia. Scleral buckles, used in the repair of retinal detachments may induce myopia by increasing the axial length of the eye. Index myopia is attributed to variation in the index of refraction of one or more of the ocular media. Cataracts may lead to index myopia. Form deprivation myopia occurs when the eyesight is deprived by limited illumination and vision range, or the eye is modified with artificial lenses or deprived of clear form vision. In lower vertebrates, this kind of myopia seems to be reversible within short periods of time. Myopia is often induced this way in various animal models to study the pathogenesis and mechanism of myopia development.

TREATMENT

The National Institutes of Health says there is no known way of preventing myopia, and the use of glasses or contact lenses does not affect its progression. There is no universally accepted method of preventing myopia and proposed methods need additional study to determine their effectiveness. Optical correction using glasses or contact lenses is the most common treatment; other approaches include orthokeratology, and refractive surgery. Medications (mostly atropine) and vision therapy can be effective in addressing the various forms of pseudomyopia.

GLASSES AND CONTACTS

Corrective lenses bend the light entering the eye in a way that places a focused image accurately onto the retina. The power of any lens system can be expressed in diopters, the reciprocal of its focal length in meters. Corrective lenses for myopia have negative powers because a divergent lens is required to move the far point of focus out to the distance. More severe myopia needs lens powers further from zero (more negative). However, strong eyeglass prescriptions create distortions such as prismatic movement and chromatic aberration. Strongly near-sighted wearers of contact lenses do not experience these distortions because the lens moves with the cornea, keeping the optic axis in line with the visual axis and because the vertex distance has been reduced to zero.

SURGERY

Refractive surgery includes procedures which alter the corneal curvature of some structure of the eye or which add additional refractive means inside the eye. Photorefractive keratectomy (PRK) involves ablation of corneal tissue from the corneal surface using an excimer laser. The amount of tissue ablation corresponds to the amount of myopia. While PRK is a relatively safe procedure for up to 6 dioptres of myopia, the recovery phase post-surgery is usually painful. LASIK: In a LASIK pre-procedure, a corneal flap is cut into the cornea and lifted to allow the excimer laser beam access to the exposed corneal tissue. After that, the excimer laser ablates the tissue according to the required correction. When the flap again covers the cornea, the change in curvature generated by the laser ablation proceeds to the corneal surface. Though LASIK is usually painless and involves a short rehabilitation period post-surgery, it can potentially result in flap complications and loss of corneal stability (post-LASIK keratectasia). Phakic intra-ocular lens Instead of modifying the corneal surface, as in laser vision correction (LVC), this procedure involves implanting an additional lens inside the eye (i.e., in addition to the already existing natural lens). While it usually results in good control of the refractive change, it can induce potential serious long-term complications such as glaucoma, cataract and endothelial decompensation.

ORTHOKERATOLOGY

Orthokeratology or simply Ortho-K is a temporary corneal reshaping process using rigid gas permeable (RGP) contact lenses. Overnight wearing of specially designed contact lenses will temporarily reshape cornea, so patients may see clearly without any lenses in daytime. Orthokeratology can correct myopia up to -6D. several studies shown that Ortho-K can reduce myopia progression also. Risk factors of using Ortho-K lenses include microbial keratitis, corneal edema etc. Other contact lens related complications like corneal aberration, photophobia, pain, irritation, redness etc. are usually temporary conditions,which may be eliminated by proper usage of lenses.

THE INTRASTROMAL CORNEAL RING SEGMENT

The Intrastromal corneal ring segment (ICRS), commonly used in keratoconus treatment now, was originally designed to correct mild to moderate myopia. The thickness is directly related to flattening and the diameter of the ring is proportionally inverse to the flattening of cornea. So, if diameter is smaller or thickness is greater, resulting myopia correction will be greater.

ALTERNATIVE MEDICINE

A number of alternative therapies have been claimed to improve myopia, including vision therapy, behavioural optometry, various eye exercises and relaxation techniques, and the Bates method. Scientific reviews have concluded that there was no clear scientific evidence that eye exercises are effective in treating near-sightedness and as such they cannot be advocated.

DISCLAIMER

These information are to be treated as information of a general nature and do not constitute advice.